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Abstract. We have carried out an elaborate study of electrical conduction in the generalized
Thue-Morse (GT™) lattice. We have studied (i) the Landaver resistance, trace map and
Tocalization length of GT™ structures, and (if) the effects of deviations of inter-barrier distances
from ideal GT™ structures on electrical conduction. Among other things, our resnlts indicate
clearly the conditions under which a GTM lattice is likely to be most akin to a periodic system.

1. Introduction

During the past 15 years or so, many researchers have been engaged with the study of the
electronic properties of one-dimensional (1D) quasiperiodic (QP) systems. In terms of its
degree of periodicity, a QP system may be regarded as being intermediate between a periodic
system and a troly disordered system. Studies of 1D quasiperiodic systems concentrate
primarily on (i) the Fibonacci lattice and (ii) the Thue-Morse (TM) lattice. Historically, the
study of the Fibonacci lattice began earlier than that of the T™ lattice, and several theoretical
treatments regarding the electronic properties of this kind of lattice have now appeared in the
literature [1-8]. Further, the Fibonacci lattice has also been realized experimentally [9] in
the form of the GaAs—AlAs superlattice; in fact, this experimental work greatly stimulated
the subsequent investigation of the Fibonacci lattice. The studies of Fibonacci lattices,
like those in [1-91, stimulaied interest in regard to what is known in the literature as the
generalized Fibonacci (GF} lattice, and several authors [10-16] have treated the electronic
properties of this kind of lattice. Theoretical treatments of the GF lattice indicated [11] that
it is expected to exhibit richer physical properties than the Fibonacci lattice.

As mentioned before, the study of the T™ lattice began later than that of the Fibonacci
lattice. As far as we could see, the first work on the T™ lattice is that due to Axel et al
[17]. The intention behind the study of the T™ lattice by these authors was to extend the
knowledge of 1D QP systems beyond the realm of the Fibonacci lattice, and this intention
was again motivated by the hope expressed by Levine and Steinhardt [18] for achieviag a
close link between disordered systems, quasiperiodic systems and periodic systems. The
work of Axel et al [17] was followed by theoretical studies of the TM lattice by several
others [19-24], as well as experimental realization of the T™M lattice [25,26]. One major
objective behind many studies [15,19,24] of the T™ lattice was to compare the degree of
aperiodicity of the T™M lattice with that of the Fibonacci lattice. '

The studies of the T™ lattice stimulated interest in the generalized Thue—Morse (GTM)
lattice, in the same way as the studies of the Fibonacei lattice did in regard to the GF lattice.
However, it appears that treatments [23,27.28] of the GTM lattice camried out so far have
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not taken adequate care of some issues. So, the purpose of this paper is to deal effectively
with these issnes, which are as indicated below.

(a) Knowledge of the Landauer resistance [29] of 1D QP systems and its linkage with
the trace map [28] and localization length [30] are of great importance in regard to electrical
conduction in such systems [24]. It appears that the study of these aspects in regard to the
GTM lattice has received limited attention so far [23]. Consequently, we thought it worth
while to make a thorough investigation of these aspects, especially in the context of the
circumstances under which a GTM lattice is likely to be most akin to a periodic system,

(b) We have studied the effects of departure from ideal GTM structure on the relevant
Landauer resistance. Our study of this issue is motivated by a similar one carried out
previously by Das Sarma and Xie [8] in regard to the Fibonacci lattice. As pointed
out by those authors, in any experimentally constructed quasiperiedic system, the inter-
barrier distances will vary somewhat from the corresponding ones required by mathematical
sequences concerned with them. As a result, some random disorder is inevitably introduced
into the quasiperiodic structures fabricated experimentally. Das Sarma and Xie investigated
the maximum variation of this sort that would preserve the qualitative nature of the transport
properties of the Fibonacci lattice. We feel that an investigation of this kind is likely to be
of great vtility in regard to GTM lattices as well.

Our studies of the aspects under both (a) and (b) are carried out (i} for certain GTM
sequences (including the ordinary T™ lattice as a special case) corresponding to fixed number
of barriers in the chain, and (ii) for an associated periodic system {APS} with the same
number of barriers as in (I). As we shall see later, a comparative analysis of Landauer
resistance (LR), trace map and localization length of the GTM lattices brings out information
regarding relative degrees of aperiodicity of the GTM lattices that we have considered. Also,
a comparative analysis of the effects of departures from ideal inter-barrier distances on the
transport properties of these GTM lattices indicates clearly which kind of GTM lattice is most
immune to such departures. Further, this comparative analysis indicates that the GTM lattice
is capable of spanning systems ranging from quasiperiodic to periodic ones.

The essential features of GTM lattices, together with those of our model, are incorporated
in section 2. The derivation of LR, trace map and localization length of the GTM lattice are
given in section 4. The treatments of section 4 are dependent on certain features of transfer
matrices for the Kronig—Penney (kP) model on aperiodic lattices, and these features are
elucidated in section 3. Numerical analyses pertinent to our various analytical results are
presented in section 5. Finally, a critical discussion of our results and relevant conclusions
are presented in section 6.

2. Some essential features of the generalized Thue-Morse lattice and our model

We realize a GTM lattice by placing rectangular potential barriers of fixed height and width
along a 1D two-tile aperiodic lattice corresponding to a GIM sequence. The separation
between the centres of two consecutive barriers takes one of two values, ¢ and d, of the
tiles, which are arranged according to the GTM sequence. It may be noted that the procedure
we have followed in constituting a GTM lattice amounts o realizing the KP model on a2 GTM
sequence. Qur treatment of electrical conduction through the GTM lattice is concerned with
electrons having sub-barrier energy.
A GTM sequence, S, is defined as

St =1{S.8"y 120 nm>l (1)
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The ‘ordinary” T™ lattice corresponds to m = # = 1. The basic unit of the GTM is Sp, which
1 given by

So = {c, d}. 2

The symbol {c, d} means that ¢ and & are arranged in that order. S is the complement of
Sy, obtained by interchanging ¢ and d. The total number of barriers, &, in a GTM lattice is
given by

Ny = 2(m+n). 3)

3. Transfer matrices for the Kronig-Penney model on aperiodic lattices

For our treatment of LR and related issues of the GTM lattice, we need some features of
transfer matrices relevant to the KP model on this kind of lattice. In this section, we
discuss the transfer matrices generally in the context of an aperiodic lattice, and apply them
subsequently to the case of the GTM lattice.

The Hamiltonian H for a_system of N barriers, with their centres at xj, is given by

h2 dz N -
H=——2-;I-EEX—2+ZIV(x—xj). A

V(x — x;) takes the constant value Vg for (x; — 5/2) < x < (x; +5/2), and it’is zero
elsewhere. The Hamiltonian given by (4) is a continuous Hamiltonian. This kind of
Hamiltonian appears to be capable of taking care of realistic features better than the so-
called discretized Hamiltonian [31], which uses tight-binding approximation.

Now, the Schmdmger equation for Hamiltonian H yields the following wavefunction,
r;, for the zero-potential region between the jth and (j + 1)th barriers in a chain of N
barriers: .

Yy = A;explik(x — x; —b/2)] + Bj exp[—ik(x — x; —-b/2)] (&)

where k% = 2moE [h% E = energy eigchvaluc of the electron.
We now introduce two (2 X 2) matrices, M; and M"), defined as below:

A; [ A '
(5)=m(5) ©
A\ _pan [ Ao ' )
(1) (2) o
where

M;(11) = [M;(22)]* = {cosh(Bb) +i[(k* — B°)/(2kB)] sinh(Bb)} eip[ik(ij -] @

M;(12) = [M;D]* = ~i[(k* + B%)/(2kB)] sinh(Bb) exp[—ik(Ax; — B)] ©)
detM; =1 ) (10)
MPY = My ... M (11)
M®(11) = (MW 22)]* (12)
MMa=mPenr (13)

det M) = 1 i (14)
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and
Ax; = (x; —x5_1) B% = 2mo(Vo — E)/R? E < Vb
If ¢ and 4 are interchanged in the two-tile aperiodic sequence, the axis of symmetry

of potential barriers is shifted to new positions X;; consequently, the matrices M; and M®)
change respectively to M; and M™), as shown below:

M; = M; with Ax; = AZ; = (%j — Fj—1) (15)

MY = My ... M. (16)

4. Landauver resistance and related issues of the generalized Thue—Morse lattice

In this section, we incorporate the treatments of (i) trace map, (if} Landauer resistance and
(iii) localization length, with regard to the GTM lattice.

4.1. Trace map and related entities of GTM lattice

As mentioned earlier, the centres of the barriers in a GTM lattice are distributed according
to the GTM sequence given by (1). The total number of barriers, ¥, in a GTM lattice then
becomes a GTM number, N;. Denoting now the matrices M%) and M®™ (N = N;) by G
and G; respectively, we can write the following recursion relations:

G =GI'G; 130 an
G = GI'G} L>0. (18)
The initial conditions relevant to {17) and (18) are shown below:

Go=Md T (19)

Go = M; Ma. (20)
Applying trace commutative law to G; and (:‘q, we have

R =R 21
where

Ry =} trace G, R, = 1 trace Gy.
Using (17), (18) and (21), we can obtain the following results:

Ry = PUD UY, - RUD 00 ¥8 + U u¥ 20 (22)

" n— n—l1*mn m~1~n—1“~mn
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where
P = UpZPUSPARRE + R, (R YT — 1) — (4280 - wdzPudsd
= 2R12R + @R Y5 = 22800 - nutPut Py
+ R+ Up P USRS — Z8 OIS - 2281
—2RUn DU WD 422 R + USTPUSD (R (Y +2R00)

pl
— (Z80 + 1+ U PPz ny (23)
() {3 !
Wn(:r): = Zga:YIEz?l Zfii = Urf;-)—ZUrE—)Z/ Uag)-lUﬂl Yrﬂ = Urfz)—z/ Ur?21 + Urft—)-z/ Uf-)l
U = sinf(n 4 1) cos~(R))]/ sinfcos (R))] for |R < 1 (24)
U® = sinh[(n + 1) cosh™! (R))]/ sinh[cosh ™ (R})] for [Ry] > 1. (25)

Equation (22) is the two-dimensional trace map for the GTM lattice. This equation
connects Ry, R and R;_;. The values of Ry and R, are obtained from their definitions.
Using Ry and Ry, one can obtain R, from (22) for I > 1. Whenm =n =1, equation (22)
reduces to the dynamical trace map of the (ordinary) T™ lattice:

Rep1 =4RP R —4RE +1 I>1. (26)

The entities R; and R; are essentialfy the real parts of Gy(11).and G,(11) respectively.
Consequently, we can write )

G =R +il; - ' 27)
Gi(11) = Ry +il}. ' ' (28)
It can be shown that J; and ; saﬁsfy the following recursion relations: .
Ly =FRUDUP - Lol ul, - Lud,ul, (29)

I-I+1 = FIUgj_lU,?21 - EUS)_IU(D - I!U,E:)_ZU,Egl (30)

n—-2
where
Fi = Up YU AR Rt oy + 2R [l QR YV = 22850 — )+ Ao Puds?

= 2RtlUn G+ B U UL + 1 U U Sy P

R—2 m—
+ USSP+ haUSPUEY + hL v Pul vl
+ (USIIE + haUSPUSS) 4 1, Ul PulPy iy
+ U+ 1 U8 PUSP + vt Pul oy
= 201 (Ry + R U P USSP YED — Ul Pyt zEvyyd-n
+o = DU DU+ e+ U PUS @R 28D - W),

(3D

F; can be obtained from (31) by changing % and Z;_; to &; and I;_; respectively.

As we shall see later, the LR of the GTM lattice is involved with, among other things, real
as well as imaginary parts of G;(11) and G;(11). Values of &, o, I, and I; are obtained
directly from the defining equations (27) and (28). Using these four entities, Z; and I can
be conveniently determined from (29) and (30), for { > 1.
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Figure 1. Variations of dimensionless resistance Q) with energy (E)} along with trace map.
Pasts {a), (B), {¢), (d) refer respectively to GrM sequences with (J,m, n) = (8,1,1}, {4,2,2),
(4,3, 1), (2,15, 1), The trace maps for the corresponding cases are shown by horizontal shaded
and unshaded regions, referring to allowed and forbidden regions of energy respectively.

4.2, Landauer resistance of GTM lattice

The Landauer resistance p of a chain of potential scatterers is given [29] by
p=(r/eHU-T)/T (32)

where T is the transmission coefficient of the entire chain. Assuming that the electron is
incident on the left end of the system, and taking note of the fact that there is no reflected
part of the wavefunction beyond the right end of the chain, we get from (32) the following
formula for the Landauer resistance p; of a GTM latiice corresponding to GTM sequence S;:

or = (/D0 (33)
Q1 =G, (12)% (34)

The dimensionless entity Q; contains all essential information about LR and, henceforth, we
will consider Q; as the effective LR for convenience [32). Now noting that G; = M), and
taking account of (12)-(14), we can obtain from (34) the following form of Q:

Q=R +IH—1 - — (35)
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Figure 2. Variation of localization length & with
length (L) of the sample. In {(a). graphs I, IT and III
2.0 R t : cosrespond respectively to (I, m.n) = (8, 1, 1), (¢,2,2)
0.0 4.0 89 and {4, 3, 1). Part (&) corresponds to GTM sequence with

Linm} —w ¢, m.n)= (2,15 1).

. 4.3. Localization length of GTM lattice

We have investigated the localization length & of a GTM lattice at zero temperature. £ is
obtained [30] from the following well known formula:

£ = L/In(l + (Q:)). . _ o (36)

Here L is the length of the GTM chain and (Q;) means the ensemble average of @,;. To
evaluate () for our case, we have followed the procedure used by Das Sarma and Xie
[8]; the details regarding this procedure are discussed later (section 3).

5. Numerical analyses

- Our numerical studies are concerned with (i) variation of Q; with energy, (ii) trace map of
GTM lattice, (iii) variation of & with length (L) of GTM chain, and (iv) effects of deviations
of values of ¢ and 4 from ideal GT™ sequence on O; and (Q;}. The results about aspects
(i) and (ii) are obtained on the basis of (35) and (22) respectively, and they are shown in
figure 1. As regards aspect (iii}, we have used (36) and the results are shown in figure 2.
To determine {J;) in (36), we taken an interval k € {ky, ko + t Ak], and then define [8] the
average resistance () on the k-mesh as

() = Z Qi +iAk). | ' 37)
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Figure 3. Varjation in Q; with E for non-ideal GT™ laftices characterized by 5% deviation in
values of ¢ and 4 of ideal GTM sequence.

We have taken the interval of k as [8.0, 11.0} nm™" and Ak = 0.001 nm~'.

For aspects (i}-(iii), we have assumed the total number of barriers fixed at 512. For
such a case, we get four GTM lattices with {{,m,n) = (8,1,1), (4,2,2), (4,3,1) and
(2,15, 1); it may be noted that the case (8, [, 1} represents the (ordinary} T™ lattice with
512 barriers. As regards values of parameters concerned with aspects (i}-(iii), we have
taken the following ones for all these cases: Vg = 5 eV, ¢ = 0.1 nm, 4 = 0.2 nm and
b = 0.05 nm.

The values of Q; and {@;) for non-ideal GTM lattices (aspect (iv)} are obtained
respectively from (35) and (37), by introducing variations in the values of ¢ and 4 and
keeping all other parameters the same as those in respect of (i)-(iii). The results about Oy
of non-ideal GTiM lattices are shown in figures 3 and 4, while the corresponding results for
{Q,) are given in table 1.

6. Results, discussion and conclusions

The results shown in figures 1-4 and table 1 provide us with many important features of
electrical conduction in GTM lattices constructed out of a fixed number (512) of barriers.
We now elucidate these features, which together indicate, among other things, what kind of
GTM lattice is Iikely to be most akin to a periodic system.

Looking at figure 1, we note the following features:
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Figure 4. Variation of Q; with £ for non-ideal GtM lattices with 10% deviation in values of ¢
and d of ideal GT™ lattices.

(i) For all varieties of GTM lattice, including the special case of the ordinary T™ lattice,
(; shows oscillations with energy. The values of @; are large in the gap regions and small
in the allowed regions of the relevant trace maps.

(ii) When the ratio m/n is not much different from unity (graphs (a)—{c) in figure 1),
the oscillations of €, with energy are involved with two kinds of maxima, Maxima of one
kind (marked by p) are much larger than maxima of the other kind, which occur on both
sides- of the larger ones. We call the former class ‘principal maxima® and the latter class

‘secondary maxima’ [24].

(iii) The graph (d} in figure 1 shows that; when m/n becomes quite largc compared to
unity, the oscillations of ) resemble those of LR of a periodic system. The oséillations of
LR of a periodic system with 512 barriers are shown in the inset of (d); these oscillations
are seen to be much more rapid than those of ;. We showed previously [24] that the
oscillations of LR of a periodic system with energy become less rapid with decrease of
number of barriers in the system. Considering together this fact and the graphs in (d), we
can conclude that, for large m/n, the GTM lattice resembles a periodic system with fewer
barriers than that for the GTM lattice under consideration. In other words, we may say that,
for a large value of m/n, Ny/N; < 1, where N; is the number of barriers in the GTM lattice
with large value of m/a and & is the number of barriers in the periodic system that is
equivalent to this GTM lattice.

We now come to discuss the features of & yielded by the graphs in figure 2. These
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Table 1. Average resistance ((;) taken over the k-mesh from & = 8.0 to 11.0 nm™L.

Deviations

of c and d
I m n (%) {Qn
8 11 0.0 8.39 x 103!
8 11 5.0 5.73 x 10%
8 1 1 100 5.18 x 10%
8 11 150 4.12 x 10%
4 2 2 00 6.61 % 1030
4 2 2 5.0 4.33 x 107
4 2 2 10 1.03 x 10°°
4 2 2 150 2.43 x 10%
4 301 0.0 426 x 102
4 3 1 5.0 2.70 x 102
4 3 1 100 9,19 % 1019
4 3 1 150 2.11 x 10¥
215 1 0.0 2.84 x 101t
2 15 1 5.0 5.40 x 1012
2 15 1 1090 9.55 x 1016
2 15 1 150 4.29 x 102

graphs show that, although &, exhibits oscillations for small values of L, it becomes almost
independent of L for large values of L. This situation indicates that Anderson localization
[33] occurs for all the cases shown in figure 2; further, this situation is in conformity with
the concept that, in 1D systems, all eigenstates are localized for any type of disorder [34].
However, it may be noted that the value of £, which is the value & assumes for large
L, depends on the extent of disorder. For (2,15,1) GTM chain, &, ~ 3.0 nm; for (8, 1, 1)
GTM chain, which is the ordinary T™ chain, &, ~ 1.0 nm. This observation shows that,
for large m/n value, £ is large compared to what it is when m/n is nearly unity. Since
a large value of £ implies high degree of periodicity of the lattice, we may conclude that
GTM lattices with larger values of m/»n are more akin to a periodic system than those having
m/n nearly equal to unity. This conclusion is in conformity with what we discussed earfier
in connection with figure L.

To study the effects of deviations from ideal GTM structures on electrical conduction, we
have introduced extra disorder by making the inter-barrier distances ¢ and 4 vary randomly
from layer to layer in the GTM structures. Thas, we have taken ¢ = ¢p+Ac and d = dp+-Ad,
where g = 0.1 nm and dy = 0.2 nm, Ac and Ad being the random disorder in ¢ and 4
respectively. The graphs in figure 3 show that 5% variations in ¢ and 4 do not introduce
any substantial change in @; of any GT™ lattice. When we go to 10% variations in ¢ and d
(graphs in figure 4), Oy for (2, 15, 1) case seems to be affected much more than the other
three cases. This observation is indicated more clearly by the results of table 1. Looking
at this table, one can see that the order of {Q;) remains unaffected up to 10% variation in
¢ and 4, for all cases except the (2, 15, 1) GT™ lattice. Thus, one can say that GTM lattices
with high m/r value are most sensitive to variations in values of ¢ and d and, conversely,
GTM lattices with m/n nearly equal to unity are least sensitive to such variations. Now, we
discussed previously that a large value of m/n of a2 GTM lattice makes it very much akin
to a periodic system. This fact, together with information we obtained from figure 3 and
4 and table 1, indicates that the more akin a GTM lattice is to a periodic system, the more
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sensitive it is to variations in ¢ and d. Further, our results in figures 3 and 4 and table 1 also
seem to indicate a threshold behaviour of the effect of disorder in ¢ and 4 on wansmission
properties.

As mentioned before, in practical realization of any quasiperiodic system, deviations
from ideally desired quasiperiodic sequence are unavoidable due to technical limitations.
Hence, some knowledge about the sensitivity’ of the desired systems to variations in
parameters like inter-barrier distances are likely to be of great help in practice. In this
paper, we have carried out an elaborate study of the issue with regard to GTM lattices, the
motivation of this study being provided by a previous work of this kind with regard to
Fibonacci lattices [8); we feel that treatment of this issue for all other types of quasiperiodic
systems would also be of great practical importance.
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