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Abstract We have canied out an elaborate SNdy of electrical conduction in the generalized 
ThueMone (cm) lattice. We have studied (i) the Landauer resistance, trace map and 
localization length of GTM strucNres, and (ii) the effects of deviations of inter-banier distances 
from ideal cm s t " m  on eleceical conduction. Among other things, our results indicate 
clearly the conditions under which a m  lattice is likely to be most akin to a periodic system. 

1. Introduction 

During the past 15 years or so, many researchers have been engaged with the study of the 
electronic properties of one-dimensional (ID) quasiperiodic (QP) systems. In terms of its 
degree of periodicity, a QP system may be regarded as being intermediate between a periodic 
system and a truly disordered system. Studies of ID quasiperiodic systems concentrate 
primarily on (i) the Fibonacci lattice and (ii) the Thue-Morse (TM) lattice. Historically, the 
study of the Fibonacci lattice began earlier than that of the TM lattice, and several theoretical 
treatments regarding the electronic properties of this kind of lattice have now appeared in the 
literature [l-81. Further, the Fibonacci lattice has aIso been realized experimentally [9] in 
the form of the GaA-AIAs superlattice; in fact, this experimental work greatly stimulated 
the subsequent investigation of the Fibonacci lattice. The studies of Fibonacci lattices, 
like those in [l-91, stimulated interest in regard to what is known in the literature as the 
generalized Fibonacci (GF) lattice, and several authors [10-16] have treated the electronic 
properties of this kind of lattice.  theoretical treatments of the GF lattice indicated [ll] that 
it is expected to exhibit richer physical properties than the Fibonacci lattice. 

As mentioned before, the study of the TM lattice began later than that of the Fibonacci 
lattice. As far as we could see, the first work on the TM lattice is that due to Axel et al 
[17]. The intention behind the study of the TM lattice by ,these authors was to extend the 
knowledge of ID QP systems beyond the realm of the Fibonacci lattice, and this intention 
was again motivated by the hope expressed by Levine and Steinhardt [18] for achieving a 
close link between disordered systems, quasiperiodic systems and periodic systems. The 
work of Axel ef a1 1171 was followed by theoretical studies of the TM lattice by several 
others [19-241, as well as experimental realization of the TM lattice [25,26]. One major 
objective behind many studies [15,19,24] of the TM lattice was to compare the degree of 
aperiodicity of the TM lattice with that of the Fibonacci lattice. 

The studies of the TM lattice stimulated interest in the generalized Thue-Morse (GTM) 
lattice, in the same way as the studies of the Fibonacci lattice did in regard to the GF lattice. 
However, it appears that treatments [23,27,28] of the GTM lattice canied out so far have 
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not taken adequate care of some issues. So, the purpose of this paper is to deal effectively 
with these issues, which are as indicated below. 

(a) Knowledge of the Landauer resistance [29] of ID QP systems and its linkage with 
the trace map [ZS] and localization length [30] are of great importance in regard to electrical 
conduction in such systems 1241. It appears that the study of these aspects in regard to the 
GTM lattice has received limited attention so far [23]. Consequently, we thought it worth 
while to make a thorough investigation of these aspects, especially in the context of the 
circumstances under which a GTM lattice is likely to be most akin to a periodic system. 

(b) We have studied the effects of departure from ideal GTM structure on the relevant 
Landauer resistance. Our study of this issue is motivated by a similar one carried out 
previously by Das Sarma and Xie [SI in regard to the Fibonacci lattice. As pointed 
out by those authors, in any experimentally constructed quasiperiodic system, the inter- 
barrier distances will vary somewhat from the corresponding ones required by mathematical 
sequences concerned with them. As a result, some random disorder is inevitably introduced 
into the quasiperiodic structures fabricated experimentally. Das Sarma and Xie investigated 
the maximum variation of this sort that would preserve the qualitative nature of the transport 
properties of the Fibonacci lattice. We feel that an investigation of this kind is likely to be 
of great utility in regard to GTM lattices as well. 

Our studies of the aspects under both (a) and ( b )  are carried out (i) for certain GTM 
sequences (including the ordinary TM lattice as a special case) corresponding to fixed number 
of barriers in the chain, and (ii) for an associated periodic system (APS) with the same 
number of barriers as in (i). As we shall see later, a comparative analysis of Landauer 
resistance (LR), trace map and localization length of the GTM lattices brings out information 
regarding relative degrees of aperiodicity of the GTM lattices that we have considered. Also, 
a comparative analysis of the effects of departures from ideal inter-barrier distances on the 
transport properties of these GTM lattices indicates clearly which kind of GTM lattice is most 
immune to such departures. Further, this comparative analysis indicates that the GTM lattice 
is capable of spanning systems ranging from quasiperiodic to periodic ones. 

The essential features of GTM lattices, together with those of our model, are incorporated 
in section 2. The derivation of LR, trace map and localization length of the CTM lattice are 
given in section 4. The treatments of section 4 are dependent on certain features of transfer 
matrices for the Kronig-Penney (KP) model on aperiodic lattices, and these features are 
elucidated in section 3. Numerical analyses pertinent to our various analytical results are 
presented in section 5. Finally, a cri,tical discussion of our results and relevant conclusions 
are presented in section 6. 
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2. Some essential features of the generalized Thue-Morse lattice and our model 

We realize a GTM lattice by placing rectangular potential barriers of fixed height and width 
along a ID two-tile aperiodic lattice corresponding to a GTM sequence. The separation 
between the centres of two consecutive barriers takes one of two values, c and d,  of the 
tiles, which are arranged according to the GTM sequence. It may be noted that the procedure 
we have followed in constituting a GTM lattice amounts to realizing the KP model on a GTM 
sequence. Our treatment of electrical conduction through the GTM lattice is concerned with 
electrons having sub-barrier energy. 

A GTM sequence, SI, is defined as 

SI+.] = 1s:. Sy) 0 n , m  P 1. (1) 
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The 'ordinary' TM lattice corresponds to m = n = 1. The basic unit of the GTM is SO, which 
is given by 

so = {c, d). (2) 
The symbol (c. d ]   means that c and d are arranged in that order. 5, is the complement of 
SI, obtained by interchanging c and d. The total number, of barriers, NI, in  a GTM lattice is 
given by 

Nl = 2(m + n)'. (3) 

3. Transfer matrices for.the Kronig-Penney model on aperiodic lattices 

For our treatment of LR and related issues of the GTM lattice, we need some features of 
transfer matrices relevant to the KP model on this kind of lattice. In this section, we 
discuss the transfer matrices generally in the context of an aperiodic lattice, and apply them 
subsequently to the case of the GTM lattice. 

The Hamiltonian H for a-system of N barriers, with their centres at xj, is given by 

f i 2  d2 
H = + V(X - Xj). 

2modxZ j=, 
(4) 

V(x - x j )  takes the constant value VO for ( x j  - b/2) < x < (xj + b/2), and it'is zero 
elsewhere. The Hamiltonian given by (4) is a continuous Hamiltonian. This kind of 
Hamiltonian appears to be capable of taking care of realistic features better than the so- 
called discretized Hamiltonian [31], which uses tight-binding approximation. 

Now, the Schrodinger equation for Himiltonian H yields the following wavefunction, 
+j, for the zerwpotential region between the jth and ( j  +- 1)th barriers in a chain of N 
baniem: 

qj = exp[ik(x - x j  - b/2)1+ ~j exp[-ik(x -x i  -~b/2)1 (5) 
where kZ = 2moE/fi2; E =energy eigenvalue of the electron. 

We now introduce two ( 2  x 2) matrices, Mj and M(N), defined as below: 

where 

Mj(l 1) = [Mj(22)]* = (cosh(,%) + i[(kz - p2)/(2k,6)I sinh(gb))exp[ik(Axj - b)] (8) 

Mj(12) = [Mj(21)]* = -i[(kz + ~ ' ) / ( Z k ~ ) ] s i ~ ( ~ b ) e x p [ - i k ( ~ j  - b)] (9) 

det Mj = 1 

M'" = MN . . .MI 

M ( N ) ( I l )  = [M"'(22)1* 

M(N)(12) = [M'"(21)]* 

det M"' = 1 
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and 

Axj = (xi - pz = 2mo(Vo - E)/ f i2  E < VO. 

If c and d are interchanged in the two-tile aperiodic sequence, the axis of symmetry 
of potential barriers is shifted to new positions Zj; consequently, the matrices Mj and M") 
change respectively to M j  and Mn"), as shown below: 

4. Landauer resistance and related issues of the generalized Thue-Morse lattice 

In this section, we incorporate the treatments of (i) trace map, (ii) Landauer resistance and 
(iii) localization length, with regard to the GTM lattice. 

4.1. Trace map and related entities of GTM lattice 

As mentioned earlier, the centres of the barriers in a GTM lattice are distributed according 
to the GTM sequence given by (1). The total number of barriers, N ,  in a GTM lattice then 
becomes a GTM number, Nl. Denoting now the matrices M") and MncN) (N = NI) by GI 
and GI respectively, we can write the following recursion relations: 

Applying trace commutative law to GI and a,, we have 

- 
RI = RI 

where 

RI = $traceG~ I?, = f traceGI. 
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Figure 1. Variations of dimensionless resistance Q1 with energy ( E )  along with trace map. 
Parts (0). (b), (e), (d) refer respectively to GTM sequences with (l. m. n )  = (8, 1. I), (4.2,2), 
(4,3. I), (2.15, I). The trace maps for the corresponding cases are shown by horizontal Shaded 
and unshaded regions. referring to allowed and forbidden regions of energy respectively. 

4.2. Landauer resistance of GTM lattice 

The Landauer resistance p of a chain of potential scatterers is given [29] by 

p = (h/ez)( l  - T ) / T  (32) 

where T is the transmission coefficient of the entire chain. Assuming that the electron is 
incident on the left end of the system, and taking note of the fact that there is no reflected 
part of the wavefunction beyond the right end of the chain, we get from (32) the following 
formula for the Landauer resistance PI of a GTM lattice corresponding to GTM sequence Sf: 

The dimensionless entity Ql contains all essential information about LR and, henceforth, we 
will consider Ql as the effective LR for convenience [32]. Now noting that GI = M("), and 
taking account of (12)-(14), we can obtain from (34) the following form of el: 

el = (R? + If, - 1. = (35) 
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Figure 2. Variation of localization length L with 
length ( L )  of the sample. In (a). graphs I, I1 and 111 
correspond respectively to (1. m. n) = (8. I ,  I), (4.2.2) 
and (4, 3, I ) .  PM (b) corresponds to om sequence with 
( ~ . m , n J = ( Z . l 5 , l J .  

4.3. LocakatiOn length of GTM lattice 

We have investigated the localization length 5~ of a  CL lattice at zero temperature. e~ is 
obtained [301 from the following well known formula: 

CL = L / W +  ( Q d ) .  (36) 

Here L is the length of the GTM chain and ( Q l )  means the ensemble average of Ql. To 
evaluate (QJ for our case, we have folIowed the procedure used by Das Sarma and Xie 
[SI; the details regarding thisprocedure are discussed later (section 5). 

5. Numerical analyses 

Our numerical studies are concerned with (i) variation of QL with energy, (ii) trace map of 
GTM lattice, (iii) variation of CL with 1en-a (L) of GTM chain, and (iv) effects of deviations 
of  values of c and d from ideal G m  sequence on Q j  and (el). The results about aspects 

.(i) and (ii) are obtained on the basis of (35) and (22) respectively, and they are shown in 
figure 1. As regards aspect (iii), we have used (36) and the results are shown'in figure 2. 
To determine (Q,) in (36), we taken an interval k E [ko, b + tAk], and then define [8] the 
average resistance ( Ql) on the k-mesh as 



1850 C L Roy et a1 

10 4 u . u  3.0 4.0 5.0 
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E ( e V 1  - E I e V )  - 
Figure 3. Variation in Qi with E for non-ideal CTM hltices characterized by 5% deviation in 
values of c and d of ideal GIN sequence. 

We have taken the interval of k as [8.0, 11.01 nm-' and Ak = 0.001 nm-'. 
For aspects (i)-(iii). we have assumed the total number of barriers fixed at 512. For 

such a case, we get four GTM lattices with ( l ,  m, n) = (8, 1, l), (4.2, 2), (4,3, 1) and 
(2, 15. 1); it may be noted that the case (8, 1, 1) represents the (ordinary) "M lattice with 
512 barriers. As regards values of parameters concerned with aspects (i)-(iii), we have 
taken the following ones for all these cases: VO = 5 eV, c = 0.1 nm, d = 0.2 nm and 
b = 0.05 nm. 

The values of Ql and ( 1 2 1 )  for non-ideal GTM lattices (aspect (iv)) are obtained 
respectively from (35) and (37), by introducing variations in the values of c and d and 
keeping all other parameters the same as those in respect of (iHiii). The results about Ql 

of non-ideal GTM lattices are shown in figures 3 and 4, while the corresponding results for 
{ Q l )  are given in table 1. 

6. Results, discussion and conclusions 

The results shown in figures 1 4  and table 1 provide us with many important features of 
electrical conduction in GTM lattices constructed out of a fixed number (512) of barriers. 
We now elucidate these features, which together indicate, among other things, what kind of 
GTM lattice is likely to be most akin to a periodic system. 

Looking at figure 1, we note the following features: 
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Figure 4. Variation of Q, with E for nonideal GW laniees kith 10% deviaiion in v&s of c 
and d of ideal GTM lattices. .. . 

(i) For all varieties of GTM lattice, including the special case of the ordinary TM lattice, 
Ql shows oscillations with energy. The values of Ql are large in the gap regions and small 
in the allowed regions of the relevant trace maps. 

(ii) When the ratio m/n is not much different from unity (graphs (u)4c)~in figure I), 
the oscillations of Qf with energy are involved with two kinds of maxima. Maxima of one 
kind (marked by p) are much larger than maxima of the other kind, which occur on both 
sides~of the larger ones. We call the former class ‘principal maxima’ and the latter class 
‘secondary maxima’ [24]. 

(iii) The graph (d) in figure 1 shows that; when m/n  becomes quite large compared to 
unity, the oscillations of Ql resemble those of LR of a-periodic system. The oscillations of 
-LR of a periodic system with 512 barriers are shown in the inset of (d);  these oscillations 
are seen to be much more rapid than those of Q l .  We showed previously 1241 that the 
oscillations of LR of a periodic system with energy become less rapid with decrease of 
number of bmiers in the system. Considering together this fact and the graphs in (d), we 
can conclude that, for large m/n, the GTM lattice resembles a periodic system with fewer 
barriers than that for the GTM lattice under consideration. In other words, we may say that, 
for a large value of m/n, NP/N1 < 1, where NI is the number of harriers in the GTM lattice 
with large value of m/n and Np is the number of barriers in the periodic system that is 
equivalent to this GTM lattice. 

We now come to discuss  the features of e~ yielded by the graphs in figure 2. These 
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Table 1. Average resistance (er) taken over the k-mesh from k = 8.0 to 11.0 nm-l. 

Deviations 
of c and d 

1 m n (%) (QI) 
8 I I 0.0 8.39 1031 
8 1 1 5.0 5.73 1031 
8 1 1 10.0 5.18 1030 
8 1 1 15.0 4.12 x lozs 

4 2 2 0.0 6.61 x IO3" 
4 2 2 5.0 4.83 1030 
4 2 2 10.0 1.03 1030 
4 2 2 15.0 2.43 x 10% 

4 3 1 0.0 4.26 x IO2" 
4 3 1 5.0 2.70 x IO2" 
4 3 I 10.0 9.19 1019 
4 3 I 15.0 2.11 x IO" 

2 15 1 0.0 2.84 x loL1 
2 15 I 5.0 5.40 x loL2 
2 15 I 10.0 9.55 x 1016 
2 15 1 15.0 4.29 x lo2" 

graphs show that, although R exhibits oscillations for small values of L, it becomes almost 
independent of L for large values of L. This situation indicates that Anderson localization 
[33] occurs for all the cases shown in figure 2; further, this situation is in conformity with 
the concept that, in ID systems, all eigenstates are localized for any type of disorder [34]. 
However, it may be noted that the value of e-, which is the value EL assumes for large 
L, depends on the extent of disorder. For (2,15,1) CTM chain, Cm - 3.0 nm; for (8, 1, 1) 
GTM chain, which is the ordinary TM chain, em - 1.0 nm. This observation shows that, 
for large m/n  value, 6- is large compared to what it is when m/n  is nearly unity. Since 
a large value of e~ implies high degree of periodicity of the lattice, we may conclude that 
GTM lattices with larger values of m/n are more akin to a periodic system than those having 
m/n  nearly equal to unity. This conclusion is in conformity with what we discussed earlier 
in connection with figure 1. 

To study the effects of deviations from ideal GTM structures on electrical conduction, we 
have introduced extra disorder by making the inter-banier distances c and d vary randomly 
from layer to layer in the GTM structures. Thus, we have taken c = co+Ac and d = do+ Ad,  
where CO = 0.1 nm and do = 0.2 nm, Ac and Ad being the random disorder in c and d 
respectively. The graphs in figure 3 show that 5% variations in c and d do not introduce 
any substantial change in Ql of any GTM lattice. When we go to 10% variations in c and d 
(graphs in figure 4), Ql for (2,15, 1) case seems to be affected much more than the other 
three cases. This observation is indicated more clearly by the results of table 1. Looking 
at this table, one can see that the order of ( Q l )  remains unaffected up to 10% variation in 
c and d, for all cases except the (2,15, 1) GTM lattice. Thus, one can say that GTM lattices 
with high m / n  value are most sensitive to variations in values of c and d and, conversely, 
GTM lattices with m/n  nearly equal to unity are least sensitive to such van'ations. Now, we 
discussed previously that a large value of m/n of a GTM lattice makes it very much akin 
to a periodic system. This fact, together with information we obtained from figure 3 and 
4 and table 1, indicates that the more akin a GTM lattice is to a periodic system, the more 
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sensitive it is to variations in c and d. Further, our results in figures 3 and 4 and table 1 also 
seem to indicate a threshold behaviour of the effect of disorder in c and d on aansmission 
properties. 

As mentioned before, in practical realization of any quasiperiodic system, deviations 
from ideally desired quasiperiodic sequence are unavoidable due to technical limitations. 
Hence, some knowledge about the sensitivity'of the desired systems to variations in 
parameters like inter-barrier distances are likely to be of great help in practice. In this 
paper. we have carried out an elaborate study of the issue with regard to GTM lattices, the 
motivation of this study being provided by a previous work of this kind with regard to 
Fibonacci lattices [8]; we feel that treatment of this issue for all other types of quasiperiodic 
systems would also be of great practical importance. 
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